Classificatori LDA e Tied MVG: formulazione, regole decisionali, relazioni e riduzione dimensionale LDA multiclasse

Linear Discriminant Analysis (binary)

Item LDA (binary-class form)
Generative model Each class is modeled by a multivariate Gaussian with its own mean but the same full covariance matrix
$\Sigma:p(\bold x C=c)=\mathcal N(\bold x;\mu_c,\Sigma),\ c\in\{0,1\}$
Training objective Maximum-likelihood (ML). With $n_c$ samples per class
$\hat\mu_c=\frac{1}{n_c}\sum_{i\in c}\bold x_i,\\ \hat\Sigma=\frac{1}{N}\sum_c\sum_{i\in c}(\bold x_i-\hat\mu_c)(\bold x_i-\hat\mu_c)^\top$
Discriminant/inference Log-posterior ratio is linear:
$\log\frac{p(C=1 \bold x)}{p(C=0\bold x)}=\bold w^\top\bold x+b$ with
$\bold w=\Sigma^{-1}(\mu_1-\mu_0)$ and
$b=-\frac{1}{2}(\mu_1+\mu_0)^\top\bold w+\log\frac{\pi_1}{\pi_0}$. Decision rule: “predict 1 if $\bold w^\top\bold x>t$”.
Fisher view The same classifier is obtained by the discriminative Fisher criterion: maximise $J(\bold w)=\frac{\bold w^\top S_B\bold w}{\bold w^\top S_W\bold w}$ (between vs. within scatter) giving the same direction $\bold w$.

Tied-MVG (binary) classifier

Item Tied MVG
Model assumptions Identical to the generative LDA above: two Gaussians that share a full covariance (”tied”).
Training objective The very same ML estimates for $\mu_c$ and the pooled covariance $\Sigma$.
Inference Likelihood-ratio test
$\Lambda(\bold x)=\log\frac{\mathcal N(\bold x;\mu_1,\Sigma)}{\mathcal(\bold x;\mu_0,\Sigma)}=\bold w^\top\bold x+b$, hence the decision rule is again linear and coincides with that of LDA.
Decision function Same $\bold w, b$ as above; only the threshold moves when application priors/costs change.

Relationship

For two classes the two procedures are mathematically identical:

Closed-form decision rules

$$ s(\bold x)=\bold w^\top\bold x+b,\ \bold w=\Sigma^{-1}(\mu_1-\mu_0),\ b=-\frac{1}{2}(\mu_1-\mu_0)^\top\bold w+\log\frac{\pi_1}{\pi_0} $$

Predict class 1 if $s(\bold x)>\log\frac{C_{10}\pi_0}{C_{01}\pi_1}$ (Bayes-optimal threshold).

LDA for multiclass dimensionality reduction